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Phases of a conserved mass model of aggregation with fragmentation at fixed sites
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~Received 27 December 2000; published 14 June 2001!

To study the effect of quenched disorder in a class of reaction-diffusion systems, we introduce a conserved
mass model of diffusion and aggregation in which fragmentation occurs only at certain fixed sites. On most
sites, the mass moves as a whole to a nearest neighbor while it leaves the fixed sites only as a single monomer
~i.e., chips off!. Once the mass leaves any site, it coalesces with the mass present on its neighbor. We study in
detail the effect of asinglechipping site on the steady state in arbitrary dimensions, with and without bias. In
the thermodynamic limit, the system can exist in one of the following three phases.~a! Pinned aggregate~PA!
phase in which an infinite aggregate~with mass proportional to the volume of the system! appears at the
chipping site with probability one but not in the bulk.~b! Unpinned aggregate~UA! phase in which the infinite
aggregate occurs at the chipping site with a probability strictly less than one and can coexist with infinite
aggregates in the bulk.~c! Nonaggregate~NA! phase in which there is no infinite cluster. The steady state of
the system depends on the dimension and drive. A sitewise inhomogeneous mean field theory predicts that the
system exists in the UA phase in all cases. Monte Carlo simulations in one and two dimensions support this
prediction in all but one-dimensional, biased case. In the latter case, there is a phase transition from the NA
phase to the PA phase as the density is increased. We identify the critical point exactly and calculate the mass
distribution in the PA phase. The NA phase and the critical point are studied by Monte Carlo simulations and
using scaling arguments. A variant of the above aggregation model is also considered in which total particle
number is conserved and chipping occurs at a fixed site, but the particles do not interact with each other at
other sites. This model is solved exactly by mapping it to a zero range process. With increasing density, it
exhibits a phase transition from the NA phase to the PA phase in all dimensions, irrespective of bias. The
free-particle model is also solved with an extensive number of chipping sites with random chipping rates and
we argue that it qualitatively describes the behavior of the aggregation model with extensive disorder.

DOI: 10.1103/PhysRevE.64.016107 PACS number~s!: 64.60.2i, 05.40.2a, 61.43.Hv
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I. INTRODUCTION

Reaction-diffusion systems form an important class
nonequilibrium systems whose dynamics and steady state
pend on various factors such as the nature of the reac
~aggregation, annihilation, birth, fragmentation!, number or
type of reactants involved~single- or multi-species!, velocity
of reactants~ballistic or diffusion controlled! and presence o
external input~injection! @1–3# . An interesting class with
wide ranging applications involves the elementary moves
aggregation ~coalescence on contact! and fragmentation
~break-up of clusters of masses!, besides diffusion. A numbe
of analytical results including the occurrence of nonequil
rium phase transitions have been obtained for such sys
with translationally invariant geometries@4–8#. A natural
question arises—what is the effect of quenched disorde
the possible phases of such systems and the transition
tween them? We may anticipate interesting effects,
quenched disorder is known to strongly influence the ch
acter of the steady state in other nonequilibrium syste
@9–14#. For instance, the steady state of driven diffusive s
tems on a one-dimensional~1D! lattice with bias shows
phase separation in the presence of even a single d
@10,15–17#.

To see what effect quenched disorder might have i
system with diffusion and aggregation, consider the proc
of polymerization in a random medium with traps at certa
fixed sites in which the polymer can get stuck. Aggregat
occurs when two diffusing chains meet and coalesce;
1063-651X/2001/64~1!/016107~13!/$20.00 64 0161
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reduced mobility of the aggregates at the trap sites prom
the formation of large,localizedaggregates at such sites.
these traps are not perfect and allow monomers to detach
leave, there is also a possibility of formation of largemobile
aggregates in the bulk.

To elucidate under what circumstances which types
aggregates may form as a result of these physical effe
namely, diffusion-aggregation, chipping, and trapping,
consider a simple, reduced model in which the mass lea
as a single aggregate to a nearest neighbor from all s
except at certain fixed sites from which it is allowed to lea
only by single monomer dissociation. We refer to the loss
unit mass as chipping and these special sites as chippers
total mass in the system is conserved as is evident from
dynamical rules described above. The quenched charact
the chipper sites is important in determining the steady s
of this model that is quite different from that in the transl
tionally invariant uniform-chipping model where chippin
can occur at every site@7#.

As a first step toward understanding such a spatially
homogeneous system, we study in detail the case when
a single chipper is present. Despite the simplicity of th
model, we find that the presence of a chipper gives rise
interesting steady states. We study the model both ana
cally and numerically in arbitrary dimensions, both with a
without a global bias that sets up an overall mass curr
The constraint of conservation of total mass in the mo
plays an important role in determining the steady state.
find that the system may exist in three possible phases.
©2001 The American Physical Society07-1
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KAVITA JAIN AND MUSTANSIR BARMA PHYSICAL REVIEW E 64 016107
pending on the dimension and the presence of drive,
system either stays in one of the phases or else make tr
tions from one phase to the another as the parameters
varied. These phases are characterized by the presen
absence of aggregates with mass proportional to the vol
of the system. In the thermodynamic limit, the mass of su
an aggregate diverges, so we refer to it as an infinite ag
gate. The three phases are described below.

Pinned aggregate phase (PA phase).In this phase, with
probability one, an infinite aggregate occurs at the chip
site but not in the bulk. This infinite aggregate acts a
spatially localized particle bath for rest of the system.

Unpinned aggregate phase (UA phase).In this phase, an
infinite aggregate can appear at the chipper site, but it
break and re-form; thus the chipper is occupied only fo
finite fraction of time. Besides this localized infinite aggr
gate, mobile infinite aggregates can also appear simu
neously in the bulk. In this sense, this state is different fr
the aggregate phases in translationally invariant systems
as the no-chipper limit of this model or the uniform chippin
model @7#, in which there is only one mobile infinite aggre
gate whose survival time grows exponentially with syst
size.

Nonaggregate phase (NA phase).This phase is character
ized by the absence of an infinite aggregate anywhere in
system. The mass is spread out all over the system in c
ters, each of which has a vanishing fraction of the total m
in the thermodynamic limit.

We analyzed the system within a mean field theo
~MFT! allowing for the spatial dependence in the mass d
tributions. We find that the MFT predicts the existence
only the UA phase. On comparing this result with Mon
Carlo simulations in one and two dimensions, we find qu
tative agreement except in the 1D, biased case. In this ex
tional case, there is a phase transition from the NA phas
the PA phase as the density is increased. This case is d
ent from the rest due to an interesting interplay of the bal
tic scale of motion and the diffusive scale of coalescence
one dimension.

In the model described above, an infinite aggregate
formed due to both interactions~coalescence of diffusing
particles! and the presence of an inhomogeneity in the fo
of the chipper. It is useful to contrast the behavior of th
model with that of a model ofnoninteractingparticles in
which the aggregate is formed solely due to the presenc
disorder. We solve this model in the presence of a sin
defect by mapping it to a zero range process@14,18# and
show that it exhibits a phase transition from the NA phase
the PA phase in all dimensions, irrespective of bias. Thi
in contrast to the aggregation model described earlier
does not show a phase transition in higher dimensions in
presence of single chipper.

Although we mainly discuss the case of a single chip
in this paper, we also discuss what happens in the pres
of extensive disorder in both the models. We argue tha
the presence of an extensive number of chippers, the in
action effects~i.e., coalescence! can be ignored in the aggre
gation model on large enough length and time scales an
behaves like the free-particle model. The latter model can
01610
e
si-

are
or
e

h
e-

r
a

n
a

a-

ch

he
s-
s

y
-
f

i-
p-
to
er-
-
in

is

of
le

o
is
at
e

r
ce

in
r-

it
e

solved in the presence of extensive disorder and show
phase transition in all dimensions for all bias from the P
phase to the NA phase as the density is decreased.

The remainder of the paper is organized as follows. W
define the single-chipper aggregation model in Sec. II a
discuss the possible phases on the basis of the conserv
law. We analyze the system within a MFT in Sec. III an
show that it predicts the occurrence of the UA phase.
also discuss the numerical results that support this broad
clusion in several cases. In Sec. IV we turn to the exceptio
case, namely, the one-dimensional, biased case. We pre
analytical results in the PA phase and numerical results
the NA phase and at the critical point. In Sec. V, we pres
the solution of the single-chipper free particle model. W
also discuss the likely behavior of the aggregation mo
with extensive disorder in Sec. VI. Finally we summarize o
results in Sec. VII.

II. SINGLE-CHIPPER AGGREGATION MODEL
AND ITS PHASES

A. The model

Our model is defined on ad-dimensional hypercubic lat
tice of lengthL with periodic boundary conditions, and i
studied both in the presence and absence of bias. The sy
evolves via following rules: at any site except the origin,
the mass at that site moves as a whole to a nearest neig
at a rate 1, while at the origin only a single monomer ch
off at a ratew leaving rest of the mass behind. Once the m
moves from any site to its neighboring site, it simply co
lesces with the mass present on that site instantaneously~see
Fig. 1!. Evidently, the total massM5rLd of the system is
conserved, wherer is the mass density.

The evolution of the system can be described by the t
evolution equation for the probabilityPk(m,t) that there is
massm at sitek at time t. As the moves at the origin ar
different from that at the rest of the system, the mass dis
bution at the origin~denoted by 0) and its nearest neighbo
that receive mass from the origin~denoted by setA) obey
equations different from those obeyed by rest of the sys
~setB).

FIG. 1. Illustration of the aggregation and chipping moves
one dimension. In an elementary move, only a monomer~shaded!
can leave the chipper site~located at the origin! at a ratew. At sites
other than the origin, the mass leaves as a whole~shaded! at a rate
1. Once the mass moves from any site to its neighboring site
coalesces with the mass already present on that site.
7-2
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The set of time evolution equations obeyed by the site
the bulk ~setB) are given by

]Pk~m,t !

]t
5(

d
F (

m851

m

Pk,k1d~m2m8,m8,t !

2 (
m8Þ0

Pk,k1d~m,m8,t !2Pk~m,t !G , kPB

~1a!

]Pk~0,t !

]t
5(

d F (
mÞ0

Pk~m,t !2 (
m8Þ0

Pk,k1d~0,m8,t !G ,

kPB, ~1b!

wherePk,k1d(m,m8,t) is the joint probability that sitek and
its nearest neighbork1d have massm andm8, respectively.
The indexd runs over the 2d nearest neighbors in the unb
ased case andd forward neighbors for the totally biased cas
The convolution term in Eq.~1a! is the gain term through
which the deficit mass is supplied to sitek via diffusion-
aggregation moves from its nearest neighbors. The gain t
for zero mass in Eq.~1b! results from hopping the mass from
sitek to one of its nearest neighbors. The system can get
of the configuration in which the sitek has massm ~including
zero! when ~a! the mass hops into sitek from its nearest
neighbors and~b! the nonzero mass at sitek hops to its
nearest neighbors.

For the sites in the immediate neighborhood of the ori
~setA), the time evolution equation forPk(m,t) is similar to
that for setB except that the contribution of the origin nee
to be taken into account separately. We have

]Pk~m,t !

]t
5(

d
8 (

m851

m

Pk,k1d~m2m8,m8,t !

1w (
m8Þ0

Pk,0~m21,m8,t !

2(
d

8 (
m8Þ0

Pk,k1d~m,m8,t !

2w (
m8Þ0

Pk,0~m,m8,t !2(
d

Pk~m,t !,

kPA ~2a!

]Pk~0,t !

]t
5(

d
(

mÞ0
Pk~m,t !2(

d
8 (

m8Þ0

Pk,k1d~0,m8,t !

2w (
m8Þ0

Pk,0~0,m8,t !, kPA, ~2b!

where the primed sum denotes the sum over the nea
neighbors, excluding the origin. The contribution of the o
gin is taken care of by the terms with a coefficientw that
accounts for the gain or loss in mass via chipping from
origin.
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At the origin itself, the set of evolution equations obey
are given by

]P0~m,t !

]t
5(

d
F (

m851

m

P0,01d~m2m8,m8,t !1wP0~m11,t !

2 (
m8Þ0

P0,01d~m,m8,t !2wP0~m,t !G , ~3a!

]P0~0,t !

]t
5(

d FwP0~1,t !2 (
m8Þ0

P0,01d~0,m8,t !G .

~3b!

In the gain term for nonzero mass, besides the convolu
term, there is an extra term due to the possibility of chipp
off one extra monomer with a ratew. The loss terms are
similar to those discussed for the sites in setB.

B. The phases

One can obtain useful information about the nature of
steady state from the following simple analysis. In the stea
state, the mass current into and out of any site must be eq
i.e.,

(
d

^mk&5(
d

^mk1d&, kPB ~4a!

(
d

^mk&5ws01(
d

8 ^mk1d&, kPA ~4b!

(
d

ws05(
d

^m01d&, ~4c!

where ^mk& is the average mass at sitek5” 0 and s051
2P0(0) is the probability that the origin is occupied. Th
solution of the above equations gives^mk&5ws0 for all k
Þ0. Thus the average mass on a site in the bulk is uniform
spite of broken translational invariance. Since the total m
of the system is conserved, the average mass at the o
^M0& must satisfy

^M0&5rLd2ws0~Ld21!. ~5!

Using this constraint equation, one can deduce some cha
teristics of the possible phases in the system as follo
Since the left-hand side~LHS! in Eq. ~5! is non-negative and
s0 is bounded above by one, the allowed domain fors0 is
constrained as shown in Fig. 2. Depending on the value os0
~and hencê M0&), the system can exist in one of the thre
distinct phases described below.

PA phase.The system exists in this phase whens0 is
pinned to its maximum value 1 for allr.w ~shown by the
bold line in Fig. 2!. From the constraint equation~5!, one
deduces that the average mass at the origin grows asLd

giving rise to an infinite aggregate in the thermodynam
7-3
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KAVITA JAIN AND MUSTANSIR BARMA PHYSICAL REVIEW E 64 016107
limit. Thus the pinned aggregate phase is defined as tha
which an infinite aggregate is present at the origin with
probability one.

UA phase.The system exists in this phase for all values
s0 lying in the shaded region in Fig. 2. This phase is char
terized bys0 strictly less than 1, and not equal tor/w. As in
the PA phase, the average mass at the origin grows asLd but
s0 is not fixed and varies withr. Sinces0,1, the infinite
aggregate is present at the origin only for a finite fraction
the time. For this reason, we refer to this phase as the
pinned aggregate phase.

NA phase.This phase is characterized bys0→r/w as L
→` ~shown by the dashed line in Fig. 2!. Using Eq.~5!, one
immediately obtains^M0&/L

d→0 in the thermodynamic
limit. Due to the absence of an aggregate with mass
O(Ld) at the origin, we call this the nonaggregate phase

A more detailed study of the system shows that depend
on the dimension and drive, the system can either stay in
of the three phases or else make transitions from one p
to another asr is varied, keepingw fixed. We have solved
for ^M0& ands0 in d dimensions within a sitewise inhomo
geneous mean field theory~Fig. 2! which predicts that the
system exists only in the UA phase in all dimensions, rega
less of the bias. This prediction was tested numerically
several cases and seen to be qualitatively correct exce
the 1D, biased case. In the latter case, there is a phase
sition from the NA phase to the PA phase as one crosses
critical line r5w either by increasingr with w held fixed or
by decreasingw for fixed r.

III. THE UNPINNED AGGREGATE PHASE: MEAN FIELD
THEORY AND MONTE CARLO SIMULATIONS

In this section, we analyze the aggregation model wit
the mean field approximation. We implement this appro
mation by replacing the joint probability distributio
Pk,k1d(m,m8,t) by the productPk(m,t)Pk1d(m8,t) of the

FIG. 2. Plot ofs0 vs r to show the three possible phases in t
steady state of the aggregation model in the thermodynamic li
The system exists in~a! the pinned aggregate phase whens0 is one
~bold horizontal line!, ~b! the unpinned aggregate phase whens0

,1 and not equal tor/w ~gray shaded region!, and~c! the nonag-
gregate phase whens0 is equal tor/w ~dashed line!. The smooth
curve shows the MFT solution fors05r/(r1w) in the aggregation
model.
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single site probability distributions. We begin with the MF
analysis in arbitrary dimensions in Sec. III A. We will se
that MFT predicts only the existence of the UA phase in
dimensions, irrespective of bias. In Sec. III B, we study t
UA phase in one dimension in more detail. We discuss so
limitations of this MFT and also present some numeri
results. We close this section with a qualitative discussion
the UA phase.

A. MFT in arbitrary dimensions

In this section, we solve for̂M0& and s0 in arbitrary
dimensions and for all bias within MFT and show that
predicts the occurrence of only the UA phase in all case

In the steady state, the mass distribution at any sitek is
independent of time and is determined by setting the LHS
Eqs. ~1a!–~3b! equal to zero. Further we replac
Pk,k1d(m,m8) by Pk(m)Pk1d(m8) in Eqs.~1a!–~3b! to ob-
tain the mean field equations forPk(m). To study these
equations, we defineQk(z)5(m50Pk(m)zm, the Laplace
transform ofPk(m) with respect to mass, and find that
obeys the following set of equations:

(
d

Qk5(
d

@11Qk~Qk1d21!#, kPB ~6a!

Qk5

(
d

1

(
d

11ws0~12z!2(
d

8 ~Qk1d21!

, kPA

~6b!

Q05

(
d

w~12z!~12s0!

(
d

@w~12z!1z~Q01d21!#

. ~6c!

SincePk(m) is normalized to one,Qk(1)51 for all k in the
above equations. The average mass in the bulk^mk&
5Qk8(z)uz51 still obeys Eqs.~4a!–~4c! that gives uniform
mass in the bulk̂m&5ws0, and Eq.~5! still holds.

Although we could not solve the above set of nonline
coupled equations, we were able to compute two quanti
of primary interest, namely,̂M0& ands0. We begin by ob-
serving that the average mass at the origin can be writte
terms of the mean-squared mass at its nearest neighbor

^M0&5

(
d

~2ws01^m01d
2 &2^m&!

(
d

2w~12s0!

, ~7!

where we have used that̂M0&5Q08(z)uz51 and ^mk
2&

5Qk9(z)uz511^m&, k5” 0.
The mean-squared mass at sites other than the o

obeys the following set oflinear equations:

it.
7-4
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FIG. 3. Plot of^M0& vs Ld for the symmetric, aggregation model for~a! d51 and~b! d52. In each case, the numerical result is plott
for two densitiesr51.5 ~squares! and r50.5 ~triangles! along with the MFT prediction~solid line for r51.5 and broken line forr
50.5). Set of parameters used:w51.
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(
d

^mk
2&5(

d
~^mk1d

2 &12^m&2!, kPB ~8a!

(
d

^mk
2&5(

d
8 ~^mk1d

2 &12^m&2!12^m2&1^m&, kPA.

~8b!

It suffices to calculate(d^m01d
2 & in order to obtain̂ M0&.

Adding the aboveLd21 equations, one obtains

(
d

^m01d
2 &5(

d
~2^m&2~Ld21!1^m&!, ~9!

which further yields

^M0&5
ws01^m&2~Ld21!

w~12s0!
5rLd2ws0~Ld21!, ~10!

where the mass conservation equation~5! has been used in
the last identity. Solving fors0 and ^M0& in terms ofr, w,
andL, we find

^M0&5
rLd~11rLd!

~12w!1~r1w!Ld
, ~11a!

s05
rLd

~12w!1~r1w!Ld
. ~11b!

To leading order inL, the above equations givêM0&;Ld

and s0,1 that are the signatures of the UA phase. Th
MFT predicts that the system exists only in the UA phase
all r andw ~see Fig. 2!. Our numerical simulations show tha
this prediction is true at least qualitatively in all cases exc
in the 1D, biased case. In Fig. 3, we show our simulat
01610
s
r

t
n

results for^M0& in the absence of bias in 1D and 2D plotte
along with the MFT results, and find qualitative agreeme
We also measureds0 for various system sizes and densitie
fixing w51 and find that it is independent ofL in accordance
with Eq. ~11b!. For r50.5, we found thats0

num.0.42 to be
compared withs0

MFT.0.33; for r51.5, numericallys0
num

.0.84 whereass0
MFT50.6.

B. The UA phase in one dimension

In this section, we analyze the UA phase in more detai
the 1D, unbiased case. We solve Eqs.~8a! and ~8b! for the
mean-squared mass in the bulk in this case and find tha
MFT seems to violate the conservation law. We comment
this limitation of MFT. We also present numerical eviden
that shows the simultaneous presence of more than one
nite aggregate in the system.

For convenience, we will chooseL to be odd. The mean
squared mass at sites other than the origin obeys the fol
ing equations:

2^mk
2&5^mk21

2 &1^mk11
2 &14^m&2, uku>2 ~12a!

2^m1
2&5^m2

2&1^m&14^m&2, ~12b!

2^m21
2 &5^m22

2 &1^m&14^m&2. ~12c!

This set of equations can be solved and one obtains

^mk
2&52^m&2~L21!12^m&2~ uku21!~L2uku21!

1^m&, k5” 0. ~13!

To leading order inL, the above result can be written in th
scaling form^mk

2&5L2f (uku/L) where f (x)5x(12x) @19#.
7-5
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FIG. 4. Data collapse for the mean squared mass at sitek5” 0 for 1D, symmetric aggregation model forL532,64,128,256 for~a! r
51.5 and~b! r50.5. The numerical fity5A(r)Ax(12x) wherex5uku/L is shown in broken line withA(r51.5)51.52 andA(r50.5)
50.34. Set of parameters used:w51.
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The mean squared mass^mk
2& is actually a measure of th

typical mass at sitek. To see this, note that we may defin
two types of average over mass distributions at sitek,
namely, an averagê•••& over all mass occupations includ
ing mk50, and an averageŠ^•••&‹ over mass occupation
excluding mk50. It is straightforward to see thatŠ^•••&‹
5^•••&/sk wheresk512Pk(0) is the probability that sitek
is occupied. For instance, the average mass^mk& is same on
all sites while the typical massŠ^mk&‹5^mk&/sk will depend
on k. Similarly, Š^mk

2&‹ is the square of the typical mass
sitek, implying that^mk

2&5Š^mk
2&‹sk may be interpreted as

measure of the typical mass at sitek.
We performed numerical simulations to test the me

field prediction for the scaling form̂ mk
2&5L2f (uku/L),

where f (x)5x(12x). As shown in Fig. 4, we obtain a dat
collapse with the scaling form̂mk

2&5Lg(uku/L) with g(x)
;Ax(12x) as the numerical fit for the scaling function
Since g(x);Ax for x close to zero and is constant forx
'1/2, the typical mass scales asAL for k close to the origin
but asL at sites diametrically opposite to the origin. Th
points to the existence of an aggregate in the bulk as w
consistent with the nomenclature unpinned aggregate ph

One notes that the MFT solution seems to violate
conservation law since it predicts typical masses ofO(L2) at
sites situatedO(L) away from the chipper. On the othe
hand, one can also check that Eq.~5! is true using the MFT
results for ^M0& and s0. Thus MFT seems to be able t
describe the vicinity of the chipper more correctly than t
bulk. The reason for this could be that the mass fluctuati
about the mean near the chipper are small due to fragme
tion unlike those in the bulk where only the aggregati
move operates. At a distance ofO(L) away from the chip-
per, to a good approximation, one can neglect the prese
of the chipper. Then as all the mass resides only on one
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the mass-mass correlation function at two different si
^mimj& is exactly zero in the steady state, in strong contr
to the mean field approximation̂mimj&5^m&2. Thus a more
refined approximation is required in the regions where
aggregation move dominates.

In Fig. 5, we present the numerical evidence which in
cates the simultaneous presence of more than one infi

FIG. 5. Data collapse for the conditional average mas
^Mmax

(1) & and ^Mmax
(2) & of the clusters of largest and second large

mass in the bulk when the mass at the chipper isM0 for 1D, sym-
metric aggregation model forL532,64,128,256. Set of paramete
used:w51, r51.
7-6



v
t
he
is

re
re

ou
t

e
t
ic

ity

u
-
t

d
be
f t

UA
dr
a

c
a
t

o
c

o
e
e
is

tr
ur
a

as

e

in

O

A
ion.

time
hen

ve

em

e

the

te
o
an
ice
o-

h a
rop-
-

alk
n at
.

-
r

PHASES OF A CONSERVED MASS MODEL OF . . . PHYSICAL REVIEW E 64 016107
aggregate in the system. We measured the conditional a
age masseŝMmax

(1) & and^Mmax
(2) & of the clusters of the larges

and second largest mass in the bulk respectively, given t
is a massM0 at the chipper. We find that data collapse
obtained with the scaling formŝMmax

(1) &5L f 1(M0 /L) and
^Mmax

(2) &5L f 2(M0 /L), where the scaling functionsf 1(x) and
f 2(x) decay almost linearly. Thus a localized infinite agg
gate at the chipper and one or more mobile infinite agg
gates in the bulk can be present at the same time; we w
expect more than one infinite aggregate to be presen
higher dimensions as well.

In any dimensiond, far away from the chipper site, th
state resembles that in the absence of the chipper. In
latter case, there is a single mobile infinite aggregate wh
is equally likely to be present at any site with a probabil
1/Ld. Although this mobile aggregate with mass of orderLd

arrives at the chipper infrequently, the probability of occ
pation s0 of the chipper is ofO(1)—this enhancement oc
curs because mass can leave only one unit at a time, so
it stays for a time of at least orderLd. It is implicit in the
above argument that an infinite aggregate can be forme
the bulk before it hits the chipper. However, this fails to
true in the 1D, biased case; this explains the absence o
UA phase in that case.

IV. ASYMMETRIC SINGLE-CHIPPER AGGREGATION
MODEL IN ONE DIMENSION

The mean field prediction that the system exists in the
phase fails in 1D, biased case. In the presence of a
velocity, the one-dimensional system undergoes a ph
transition from the NA phase to the PA phase asr is in-
creased, keepingw fixed. This exceptional case is the subje
of this section. Although the phase transition survives for
nonzero bias, we will only discuss the extreme case when
mass moves only forward~i.e., infinite bias!.

The time required to form an aggregate with mass
O(L) in the bulk isO(L2). But in this case, due to ballisti
motion, the mass clusters return to the chipper in time
O(L) ruling out the formation of an infinite aggregate in th
bulk. For smallw, the sublinear mass arriving at the chipp
cannot leave it easily and is temporarily trapped giving r
to a localized infinite aggregate~PA phase!. As w is in-
creased, the mass leaves more frequently rendering the
ping less effective; also this chipped off mass cannot ret
before the chipper gets empty so that an infinite aggreg
cannot be sustained at the chipper for largew ~NA phase!.
Thus there is a phase transition in the 1D, biased casew
~or alternativelyr) is varied.

The critical point is determined exactly to be atrc5w in
the thermodynamic limit by setting the LHS to zero ands0
51 in Eq.~5!. Forr,rc , the system exists in the NA phas
that is characterized bys05r/w and ^M0& growing sublin-
early withL. Forr.rc , the system exists in the PA phase
which s0 is pinned to its maximum value 1 and^M0& grows
linearly with L ~see Fig. 2!. The probabilityP0(0)512s0
that the origin is empty serves as an order parameter.
numerical simulations indicate that to leading order inL,
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12s05P0~0!;H O~e2L/L0!, r.w

O~AL !, r5w

constant, r,w.

~14!

Since P0(0) varies continously from the NA phase to P
phase asr increases, this is a second-order phase transit

It is useful to introduce two quantitieŝt0& and ^t1& that
respectively denote the average number of consecutive
steps during which the chipper is empty and occupied. T
s0 is related tô t0& and^t1& throughs0

21215^t0&/^t1&. De-
pending on whether the ratiôt0&/^t1& is zero or not in the
thermodynamic limit,s0 is either pinned to 1~PA phase! or
strictly less than 1~NA phase!. From Eq.~14!, in the PA
phase,̂ t0&/^t1&;e2L/L0 due to long cascades of successi
mass inputs, thus enabling the origin to maintains0 equal to
1 and to build an aggregate with mass of order of syst
size. By contrast, in the NA phase,^t0&/^t1& approaches a
constant, independent ofL due to the absence of multipl
inputs that reducess0 from its maximum value 1. We now
turn to a systematic discussion of each phase.

A. The pinned aggregate phase

Since the total mass in the system is conserved and
L21 sites in the bulk have nonzero average mass^m& and
sublinear fluctuations about the mean mass~due to absence
of a cluster of mass of orderL in the bulk as argued above!,
the probability P0(m) that the origin has massm is
;(1/AL)exp@2(m2m0)2/L# where m0;M2^m&L that
givesP0(0);exp(2L). Thus in this phase, the chipper si
is occupied with probability 1 in the thermodynamic limit s
that it acts as a reservoir of particles for the bulk. One c
think of the system as a semi-infinite, one-dimensional latt
with a perfect, localized source at the origin injecting mon
mers into it at the ratew.

The problem of aggregation in the presence of suc
source has been considered previously as well. Some p
erties were studied in@20# using the technique of interpar
ticle distribution function~IPDF! introduced in@22#, and in
@21# by mapping this 1D problem to a bounded random w
in 2D. Here we calculate the steady state mass distributio
site k denoted byPk(m) by the generating function method
We define ther-point characteristic function for sitek at time
t asZr

(k)(l,t)5^exp@2l( j 5k
k1r 21mj (t)#&. The time evolution

equations obeyed byZr
(k)(l,t) with a perfect, localized

source atk50 are given by

]Zr
(k)

]t
5Zr 11

(k21)1Zr 21
(k) 22Zr

(k) , k5” 1, r 5” 0 ~15a!

]Zr
(1)

]t
5Zr 21

(1) 1~we2l212w!Zr
(1) , r 5” 0 ~15b!

with the boundary conditionZ0
(k)(l,t)51 for all k.0. In the

steady state,Zr
(k)(l,t) is independent oft.

We need to solve forZ1
(k)(l) which is the Laplace trans

form of Pk(m) with respect tom. One can easily solve fo
7-7
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Z1
(1)(l) using Eq. ~15b! and the boundary conditionZ0

(1)

51. Its inverse Laplace transform for largem gives P1(m)
5e2m/w/w. Thus the mass distribution at the first site deca
exponentially. Now to find the probability distribution in th
bulk, we define

H~x,y,l!5 (
k52, . . .

(
r 51, . . .

Zr
(k)~l!xkyr . ~16!

Using equations~15a! and ~15b!, one obtains

H~x,y,l!5
xy

y222y1x
FG~x,l!2xyS 1

12x
1

f 2

12 f yD G ,
~17!

where 1/f 511w2we2l and G(x,l)5(k52, . . .Z1
(k)(l)xk.

Clearly, the inverse Laplace transform ofG(x,l) with re-
spect tol andx givesPk(m) for k.1. To calculateG(x,l),
we use the same method as in@23#. We first note that the
denominator ofH(x,y,l) has roots aty6516A12x. The
root aty5y2 lies inside the unit circle that in the real spa
~i.e., r-space! gives an exponentially increasing solutio
This is disallowed since the inverse Laplace transform
H(x,y,l) gives a probability that is always bounded abov
To avoid this pathological solution, we demand thaty5y2 is
a zero of the numerator as well, i.e.,

G~x,l!5xy2S 1

12x
1

f 2

12 f y2
D . ~18!

For l→0 andx→1, the inverse Laplace transform can
easily found. We find thatPk(m) has a scaling form
f(u)/m2 whereu5m/2wAk and the scaling function is

f~u!5
4w

Ap
u3e2u2

. ~19!

One can also obtain the probability distributionPk(0) of
zero mass at sitek by solving for G(x,l) when l→` and
x→1. To leading order ink, one obtainsPk(0)512sk51
21/Apk. We tested our calculations against the numeri
simulations performed on the single-chipper model a
found reasonably good agreement~see Fig. 6!. Thus the typi-
cal mass at sitek grows asAk.

We now calculate the typical spacing between the mas
using the method of IPDF@22#. We defineEk(r ,t) as the
probability that the sitesk to k1r are empty~includingk and
k1r ). ThenEk(r ,t) satisfies the following equations,

]Ek~r ,t !

]t
5Ek~r 21,t !22Ek~r ,t !1Ek21~r 11,t !, k5” 1

~20a!

]E1~r ,t !

]t
5E1~r 21,t !2~11w!E1~r ,t !, ~20b!

with the boundary conditionEk(21,t)51 for all k.0. In
the steady state,Ek(r ,t) is independent oft and one can
01610
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f
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write the above equation in terms ofF1(z,y)
5(k52, . . .( r 50, . . .Ek(r )zkyr and R(z,r )
5(k52, . . .Ek(r )zk, r 50,1, . . . . We find

F1~z,y!5
y

y222y1z
FzR~z,0!

y
2

z2

~11w!~11w2y!

2
z2

12zG . ~21!

With the same reasoning as in the previous calculation,
demand that the numerator ofF1(z,y) evaluated aty251
2A12z be zero. This condition gives

R~z,0!5F 1

12z
1

1

~11w!~11w2y2!Gzy2 , ~22!

which on inverting the Laplace transform gives the probab
ity Ek(0) that is same asPk(0). One cancheck that the
result forPk(0) quoted above is reproduced. Using Eq.~22!
in Eq. ~21!, we obtain

F1~z,y!5
2z2

y2y1
F 1

12z
1

1

~11w2y!~11w2y2!G ,
~23!

wherey1511A11z.
We further defineDk(r ) as the probability that both site

k andk1r are occupied but no sites in between. Then

FIG. 6. Data collapse for the unnormalized probability distrib
tion of mass at sitek564 ~solid squares!, 128 ~crosses!, 256
~squares! in the PA phase plotted against the analytical result. Ins
log-log plot of probability distribution for nonzero mass at sitek
plotted against the analytical result. Set of parameters usedL
5256,r52,w51.
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Dk~r !5Ek11~r 22!2Ek11~r 21!2Ek~r 21!1Ek~r !,

kÞ1, rÞ0. ~24!

Defining the Laplace transform ofDk(r ) with respect tok
and r asF2(z,y)5(k52, . . .( r 50, . . .Dk(r )zkyr , we obtain

F2~z,y!5
1

z S R~z,22!1
yz2

12zD2
z~11z!

12z

1F1~z,y!Fy2

z
1~12y!S 11

1

zD G1z~12y!

3S 11
y

22y H 11
1

~11w!~11w2y!J D , ~25!

whereF1(z,y) was calculated above.
Then the typical empty space^r k& in front of sitek can be

obtained by taking the inverse Laplace transform
(]F2 /]y)uy51 with respect toz. One finds

^r k&511
2

Apk
2wew2k erfc~wAk!, ~26!

which for large k implies that the typical empty spac
Š^r k&‹5^r k&/sk in front of occupied sitek varies asAk.

Thus, in the PA phase, the mass in the bulk is distribu
in AL clusters with typical massAk at sitek, and an empty
stretch of lengthAk in front of it.

B. The nonaggregate phase

As discussed earlier, in the NA phase,s0 is strictly less
than 1 due to substantial time stretches of typical length^t0&
during which the origin is not occupied. Thus the origin do
not act as a perfect source unlike in the PA phase and
could not calculate the mass distribution in this phase. Ho
ever, one can obtain useful information about the nature
this phase by simple scaling arguments. We begin by argu
that^M0& grows sublinearly withL and then provide numeri
cal evidence for the absence of an infinite aggregate~i.e.,
mass proportional toL) in the bulk, thus concluding tha
there is no infinite aggregate anywhere.

Monte Carlo simulations indicate that^M0&, ^t0&, and
^t1& vary as a power law inL with a constant as a next-orde
correction ~see Fig. 8!. Therefore, we assumêM0&5aLb

1b, ^t0&5c0Lg1d0, and ^t1&5c1Lh1d1. Solving for s0
using Eq.~5!, we obtain

s05
r

w
1OS 1

L12bD . ~27!

Then since the lowest-order term fors0 is a constant and
s0

21215^t0&/^t1&, one obtainsg5h. Using this identity
and retaining terms to lowest order inL we further obtain

s05
c1

c01c1
1OS 1

LgD . ~28!
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Comparison between Eq.~27! and Eq.~28! yields b1g51.
Now we consider the typical massŠ^mk&‹ in the bulk

where the site indexk is labeled by positive integers in th
clockwise direction with the chipper at the origin. Nume
cally, Š^mk&‹ is observed to obey the scaling form,Š^mk&‹
5Ak f(k/L) as shown in the data collapse in Fig. 7. T
scaling function is a slowly varying function, which give
sublinear mass everywhere in the bulk. Thus in the N
phase, the mass is distributed in clusters of typical m
;O(AL) for k;O(L).

Since the mass at the site just behind the chipper is
O(AL) and the number of mass inputs to the chipper is ty
cally of O(1), it follows that ^t1&;O(AL) so thath50.5,
which further givesb5g5h50.5 due to the two scaling
relations above. These exponent values are checked num
cally, as shown in Fig. 8.

C. The critical point

We studied the critical point mainly numerically by stud
ing the L dependence of̂M0&, ^t0&, and ^t1&. Assuming a
power law dependence for̂M0&;Lb, ^t0&;Lg, and ^t1&
;Lh , a naive best fit in the rangeL532 to 2048 givesb
.0.62, g.0.38, andh.0.80. However, the effective expo
nent calculated using the successive ratios ofL used in the
simulations shows systematic trends:b decreases asL in-
creases while bothg and h increase withL. A better fit is
obtained if one allows for logarithmic corrections in th
power laws for̂ M0& ~see Fig. 9! and ^t0& with b5g51/2.
This indicates that botĥM0& and^t0& may vary asAL with
multiplicative logarithmic corrections.

Using Eq. ~5! and the condition of criticality, one can
easily show thath1b2g51. Using b5g51/2 as sug-
gested by the discussion above, we obtainh51. The above-

FIG. 7. Data collapse for the typical mass at sitek5” 0 in the NA
phase for L564,128,256,512,1024. Set of parameters usedr
51,w52. In this figure, all the sites are labeled by positive integ
in the clockwise direction with the chipper at the origin.
7-9
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quoted values for the exponentsb andg are consistent with
the scaling relationb1g51 which seems to be true in th
NA and the PA phase as well. In the NA phase, we have s
in Sec. IV B that this scaling relation holds. In the PA pha
we found numerically that̂ t0& is independent ofL in the
thermodynamic limit implying thatg50; further sinceb
51, it follows that the scaling relationb1g51 holds in this
phase also.

We have also numerically studiedP(t1) that is the prob-
ability that the origin is occupied fort1 consecutive time
steps. At the critical point, this distribution shows tw
peaks—a broad peak occurs at the typical time scalet1
;Lb while there is a narrow peak att15Np /w. We have not
been able to reliably separate out these two contribution
P(t1) but since the scaling relation yieldsh51, one may
expect that the second peak dominates the asymptotic v
of h.

V. SINGLE-CHIPPER FREE PARTICLE MODEL

A. The model

In this section, we study the steady state of a mode
noninteracting particles in which a localized infinite agg
gate is formed solely due to disorder. In this model the p
ticles diffuse freely in the bulk except at certain, quench
sites referred to as the chipper sites. It can be shown that
system exhibits a phase transition from the NA phase to
PA phase~as defined in Sec. II B! as the particle density is
increased in all dimensions for all bias. In this section,
will demonstrate this result in the presence of a single ch
per. We will see that even a single defect is capable of
ducing a phase transition in all dimensions, unlike in t

FIG. 8. Plot of^M0&, ^t0&, and^t1& as a function ofAL in the
NA phase. Since all the three curves are linear, it follows t
^M0&5aLb1b, ^t0&5c0Lg1d0, and ^t1&5c1Lh1d1 with b5g
5h50.5. Set of parameters used:r51,w52.
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aggregation model. We will discuss the solution with an e
tensive number of chipper sites in Sec. VI.

Our model is defined on ad-dimensional hypercubic lat
tice with periodic boundary conditions on which we consid
the biased and unbiased diffusion of a conserved numbe
particles. At any site except the chipper, each particle
tempts to hop out at rate 1. Since the particles do not in
act, the hopping rate out of sitek occupied bym particles is
m. At the chipper site, assumed to be at the origin, the h
ping rate is a constantw, independent of the number of pa
ticles. Thus, the rateuk(m) at which a particle leaves sitek
that hasm particles is given by

uk~m!5wdk,01m~12dk,0!, m5” 0. ~29!

In the fully asymmetric, 1D case, the model described ab
can be mapped onto a single lane traffic model with sequ
tial updating and no overtaking. We represent each site
this model as a car and each particle as a vacant site. Th
system ofM free particles on a lattice of sizeL maps onto a
system ofL particles with hard core interactions on a latti
of size L1M . In this new representation, the special c
~corresponding to the chipper site! moves with a constan
rate, irrespective of the headway in front of it and rest of t
cars~sites other than the chipper! move with a rate propor-
tional to the headway in front of it. Note that thesitewise
disorder in the free particle model corresponds toparticle-
wisedisorder in the traffic model.

B. Phase transition in arbitrary dimensions

The steady state of this system can be found exactly
noting that the hopping rates Eq.~29! in this model corre-

FIG. 9. Plot of ^M0&/L
0.62 ~squares! and ^t0&/AL(ln L)b8, b8

.0.7 ~triangles! as a function ofL at the critical point in the 1D,
biased case. The variation of^M0& asAL with multiplicative loga-
rithmic correction seems to be a better fit than the fit to a p
power law. The plot of̂ M0&/L

0.62 vs L has been scaled by a con
stant factor. Set of parameters used:r51, w5rL/(L21).

t
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spond to a special choice of rates in the zero range pro
@18,14#. In this process, a particle at sitek hops to its neares
neighbor independent of the state at the target site, so tha
interaction has zero range. The steady state measure o
process can be found in any dimension with or without bi
A convenient way to find it is by using the condition o
pairwise balance@24# which states that for any given con
figuration C, one can find a configurationC8 in one-to-one
correspondence withC9 such that

W~C8→C!P~C8!5W~C→C9!P~C!, ~30!

whereP(C) is the probability of a configurationC in a sys-
tem withN sites andW(C→C8) is the transition rate fromC
to C8. The above condition is satisfied by

P~C!5
1

N )
k51

N

f k~m!, ~31!

where

f k~m!5)
i 51

m
1

uk~ i !
for m.0

51 for m50, ~32!

anduk(m) is the rate at which a particle hops out of a sitek
having m particles andN is the normalization constan
f k(m) is defined upto a multiplicative factorvm wherev can
be interpreted as the fugacity.

For our model, using the above solution for the parti
distribution f k(m) and Eq.~29!, we find that the normalized
probability distributionPk(m) that the sitek in the bulk has
m particles has the Poisson form,

Pk~m!5P~m!5
e2vvm

m!
, k5” 0. ~33!

The fugacityv will be determined using the conservatio
law. At the chipper site, one can obtain solution forP0(m)
whenv,w,

P0
NA~m!5S 12

v
wD S v

wD m

,
v
w

,1, ~34!

where NA in the superscript stands for the nonaggreg
phase that we have added in the anticipation of a phase
sition.

Using equations~33! and~34!, one can easily see that th
average particle number at sitek5” 0 is ^mk&5v5ws0 that
further leads to constraint equation~5!. Since this constrain
equation is identical to that in the aggregation model, then
discussed in Sec. II B, the steady state of this model also
three possible phases~see Fig. 2!. But, as we will see, this
system never exists in the UA phase and there is a ph
transition from the NA phase to the PA phase asr is in-
creased, keepingw fixed, in all dimensions, irrespective o
bias.

Solving for the average number of particles at the ori
^M0& using Eq.~34! and substituting in Eq.~5!, we obtain
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s0

12s0
5rLd2ws0~Ld21!, 0<s0,1. ~35!

To leading order inL, one obtains two solutions, namely
s05r/w and s051. Since the above analysis holds on
whens0 is strictly less than 1, the only valid solution iss0
5r/w for r,w. For r>w, s0 is pinned to its maximum
value 1. Thus there is a phase transition from the NA ph
to the PA phase atrc5w, asr is increased, keepingw fixed.

One can solve forP0(m) in the PA phase and at th
critical point using the conservation law Eq.~5! and the fact
that Eq.~33! is valid for all s0 in the range@0,1#. Since the
total number of particles is conserved,P0(m)
5(CP(C)d((kÞ0mk5M2m). The quantity on the right-
hand side can be calculated straightforwardly. The result

P0
PA~m!5A 1

p^m2&~Ld21!

3expS 2
@M2m2^m&~Ld21!#2

~Ld21!^m2&
D , ~36!

where^m&5v and ^m2&5v(11v) from Eq. ~33!. One can
see from the above equation that^M0&5M2w(Ld21)
;Ld andP0

PA(0)512s0;e2Ld
in the PA phase. Further, a

the critical point, we haverLd5w(Ld21) using which in
Eq. ~36!, one obtainsP0(m) at the critical point,

P0
cp~m!5A 4

p^m2&~Ld21!
expS 2

m2

~Ld21!^m2&
D ,

~37!

which gives a power law decay inL for P0
cp(0).

The phase transition is brought about in this model in
following way. In the NA phase~the a low-density phase!,
the typical number of particles at all sites including the ch
per is ofO(1). As thedensity is increased, there is a pha
transition to the PA phase atrc5w. In this high-density
phase, each site in the bulk still supports onlyO(1) number
of particles in accordance with Eq.~33! so that the extra
particles condense on the chipper giving rise to^M0&;Ld.
The mechanism of phase transition in this model is simila
that in Bose-Einstein condensation as was pointed out in@10#
in a similar 1D model that shows a phase transition w
uk(m)5wdk,01(12dk,0).

VI. EXTENSIVE DISORDER

In this section, we describe a possible scenario in
more interesting and physically relevant situation when th
is an extensive number of chipper sites. These are assu
to be placed randomly, with quenched random chipping ra
wk at sitek distributed according to a distribution Prob(wk).
We are interested primarily in the aggregation model but
argued below, on large space and time scales the behavi
this model with extensive disorder resembles that of the c
responding free particle model~a generalization of the mode
7-11
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in Sec. V with an extensive number of chippers! that is ex-
actly solvable.

Let us consider the diffusion-aggregation process with
bias and take the initial condition to have a random distri
tion of masses. Then the finite concentrationc of chipper
sites brings in new length and time scales into the probl
namely the mean spacingl c;c1/d between the chippers an
the associated diffusion timetc5 l c

2 . Evidently, l c andtc de-
fine respectively the relevant length and time scales o
which the diffusing mass clusters sense the presence o
extensive number of defects.

Let us consider a finite but low concentration of chipp
sites so that 1! l c!L. On time scalest!tc , we would ex-
pect the full system to behave roughly as composed of in
pendent, finite systems of sizel c with typically a single chip-
per each. The typical state on these short time scales
resembles the UA-like steady state discussed in Sec. III.
typical mass of clusters, both mobile and localized is limit
by the time and grows proportional totd/2 as long ast!tc .

As the time crossestc , the finite spacing between th
chippers becomes relevant. The primary effect is to limit
size of the aggregates formed in the nonchipper region by
diffusion-aggregation process to; l c

d , since on a time scale
*tc the mass cluster is likely to encounter a chipper and
trapped. Fort@tc , the coarse-grained view of the system
that of mass exchanged between close-by random rate c
pers with each exchange taking a time;tc . To the extent
that only finite aggregates~with mass; l c

d!Ld! are formed
in the transit between chippers, it is plausible that on la
length and time scales, we may ignore interaction effe
~i.e., coalescence! and think of the system as effectively fre
particle-like in the nonchipper region.

The free particle model with extensive disorder is so
able along the same lines as the single-chipper problem
scribed in Sec. V. It defines a zero range process with
hopping rates,

uk~m!5wk , if k is a chipper site

5m, if k is not a chipper site. ~38!

Let x denote the fraction of chipper sites. We recover
single-chipper model asx→0, while x→1 corresponds to
every site being a chipper site, and is the model conside
in @9,10#. For all x, in the low-density phase, the mass d
tribution on the nonchipper sites follows the probability d
tribution of Eq.~33!, while at chipper sites, Eq.~34! is valid
with w replaced bywk . Let sk be the occupation probability
of sitek, ands0 refer to the occupation probability of the si
with the lowest chipping rate,w05min$wk%. Then in the
steady state, the spatial uniformity of the current leads to~i!
wksk5w0s0 if k is a chipper site, and~ii ! ^mk&5w0s0 if k is
not a chipper site. Using these relations, one can write
mass conservation equation analogous to Eq.~35! as

1

Ld

s0

12s0
1xE dw

Prob~w!s0

w/w02s0
1~12x!s0w05r, ~39!
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where we have separated out the first term correspondin
the slowest chipper.

One can analyze Eq.~39! for variousx as follows:~a! In
the limit of a single chipper~reached asx approaches 0), we
know from Sec. V that as the density is increased, there
phase transition from the NA phase to the PA phase with
infinite aggregate at the chipper site.~b! In the limit x→1,
the model reduces to that considered in@9,10#, where it is
shown that for Prob(wk);(wk2w0)n as wk→w0, the sys-
tem stays in the NA phase for allr if n<0. On the other
hand, ifn.0, then there is a transition to the PA phase w
an infinite aggregate at the site with chipping ratew0 when
the density crosses the critical density given by

rc~x51!5E dw
Prob~w!

w/w021
. ~40!

~c! For 0,x,1, there is a transition from the NA to the P
phase if Prob(w) is chosen as in~b! above. The critical den-
sity can be determined by takings0→1 andLd(12s0)→`
in Eq. ~39!, with the result

rc~x!5xrc~x51!1~12x!w0 . ~41!

Thus the critical density interpolates linearly between its v
ues in the limitsx50 andx51.

In view of the correspondence discussed at the beginn
of this section, we would expect the aggregation model w
a similar distribution of chipper sites to show a phase tr
sition from the NA to the PA phase. In the former phas
there are both localized and mobile aggregates with typ
mass; l c

d . In the PA phase, the distribution of masses
similar to that in the NA phase at all sites except the slow
chipper withwk5w0; at this slowest site, there is an aggr
gate with mass of order volume.

VII. SUMMARY

In this paper, we introduced a minimal model to study t
effect of quenched, sitewise disorder in an aggregati
fragmentation system. Our model had some simplificatio
the fragmentation was allowed to occur only at the trapp
sites, and mass-independent kernels for aggregation and
mentation were considered. Despite these simplification
retains the important physical effects of diffusion, aggreg
tion, fragmentation, and trapping.

We studied the case of a single-chipper aggrega
model in detail. In all cases except the 1D, biased case,
system exists in the UA phase in which the localized infin
aggregate at the chipper is present only for a finite fraction
time and can coexist with mobile infinite aggregates in
bulk. The simultaneous existence of more than one infin
aggregate is a new feature absent in previous studies of tr
lationally invariant aggregation-fragmentation systems@7#.
In the 1D, biased case, there is a phase transition fro
phase in which a localized aggregate with an exponenti
long life time is formed at the chipper site~PA phase! to the
one in which no aggregate is formed anywhere in the sys
~NA phase! as the density is decreased.

We also studied a variant of the above aggregation mo
7-12
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in which particles chip off at a single site but diffuse freely
the bulk. This model can be solved exactly and show
phase transition from the PA phase to the NA phase as
sity is increased in all dimensions for all bias.

Finally we discussed a likely scenario for the aggregat
model in the presence of extensive disorder and argued
interaction effects arising due to coalescence can be ign
on large enough time scales so that, as discussed abo
phase transition from the PA phase to the NA phase is
ic

ev

at

er
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pected in all cases. It would be interesting to check this
pectation by a more detailed study of the system with ext
sive disorder.
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@16# G. Schütz, J. Stat. Phys.71, 471 ~1993!.
@17# K. Mallick, J. Phys. A29, 5375~1996!.
@18# F. Spitzer, Adv. Math.5, 246 ~1970!.
@19# For the 1D, biased case, the MFT result for mean-squa

mass iŝ mk
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