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Phases of a conserved mass model of aggregation with fragmentation at fixed sites
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To study the effect of quenched disorder in a class of reaction-diffusion systems, we introduce a conserved
mass model of diffusion and aggregation in which fragmentation occurs only at certain fixed sites. On most
sites, the mass moves as a whole to a nearest neighbor while it leaves the fixed sites only as a single monomer
(i.e., chips off. Once the mass leaves any site, it coalesces with the mass present on its neighbor. We study in
detail the effect of ainglechipping site on the steady state in arbitrary dimensions, with and without bias. In
the thermodynamic limit, the system can exist in one of the following three ph@sé&nned aggregatdA)
phase in which an infinite aggregafeith mass proportional to the volume of the sysjeappears at the
chipping site with probability one but not in the bulk) Unpinned aggregatéJA) phase in which the infinite
aggregate occurs at the chipping site with a probability strictly less than one and can coexist with infinite
aggregates in the bulkc) NonaggregatéNA) phase in which there is no infinite cluster. The steady state of
the system depends on the dimension and drive. A sitewise inhomogeneous mean field theory predicts that the
system exists in the UA phase in all cases. Monte Carlo simulations in one and two dimensions support this
prediction in all but one-dimensional, biased case. In the latter case, there is a phase transition from the NA
phase to the PA phase as the density is increased. We identify the critical point exactly and calculate the mass
distribution in the PA phase. The NA phase and the critical point are studied by Monte Carlo simulations and
using scaling arguments. A variant of the above aggregation model is also considered in which total particle
number is conserved and chipping occurs at a fixed site, but the particles do not interact with each other at
other sites. This model is solved exactly by mapping it to a zero range process. With increasing density, it
exhibits a phase transition from the NA phase to the PA phase in all dimensions, irrespective of bias. The
free-particle model is also solved with an extensive number of chipping sites with random chipping rates and
we argue that it qualitatively describes the behavior of the aggregation model with extensive disorder.
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[. INTRODUCTION reduced mobility of the aggregates at the trap sites promotes
the formation of largelocalizedaggregates at such sites. If

Reaction-diffusion systems form an important class ofthese traps are not perfect and allow monomers to detach and
nonequilibrium systems whose dynamics and steady state deave, there is also a possibility of formation of largebile
pend on various factors such as the nature of the reactioaggregates in the bulk.
(aggregation, annihilation, birth, fragmentatipnumber or To elucidate under what circumstances which types of
type of reactants involvegingle- or multi-specigsvelocity  aggregates may form as a result of these physical effects,
of reactantgballistic or diffusion controlledand presence of namely, diffusion-aggregation, chipping, and trapping, we
external input(injection) [1-3] . An interesting class with consider a simple, reduced model in which the mass leaves
wide ranging applications involves the elementary moves ofs a single aggregate to a nearest neighbor from all sites
aggregation (coalescence on contacand fragmentation except at certain fixed sites from which it is allowed to leave
(break-up of clusters of masgebesides diffusion. A number only by single monomer dissociation. We refer to the loss of
of analytical results including the occurrence of nonequilib-unit mass as chipping and these special sites as chippers. The
rium phase transitions have been obtained for such systentstal mass in the system is conserved as is evident from the
with translationally invariant geometridgl—8]. A natural  dynamical rules described above. The quenched character of
guestion arises—what is the effect of quenched disorder othe chipper sites is important in determining the steady state
the possible phases of such systems and the transitions befthis model that is quite different from that in the transla-
tween them? We may anticipate interesting effects, asionally invariant uniform-chipping model where chipping
guenched disorder is known to strongly influence the charean occur at every sitg].
acter of the steady state in other nonequilibrium systems As a first step toward understanding such a spatially in-
[9-14). For instance, the steady state of driven diffusive syshomogeneous system, we study in detail the case when only
tems on a one-dimension&lD) lattice with bias shows a single chipper is present. Despite the simplicity of the
phase separation in the presence of even a single defextodel, we find that the presence of a chipper gives rise to
[10,15-117. interesting steady states. We study the model both analyti-

To see what effect quenched disorder might have in aally and numerically in arbitrary dimensions, both with and
system with diffusion and aggregation, consider the proceswithout a global bias that sets up an overall mass current.
of polymerization in a random medium with traps at certainThe constraint of conservation of total mass in the model
fixed sites in which the polymer can get stuck. Aggregationplays an important role in determining the steady state. We
occurs when two diffusing chains meet and coalesce; thénd that the system may exist in three possible phases. De-
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pending on the dimension and the presence of drive, the w
system either stays in one of the phases or else make transi- {\ q

tions from one phase to the another as the parameters are i

varied. These phases are characterized by the presence or -
absence of aggregates with mass proportional to the volume 1 - {\ q
of the system. In the thermodynamic limit, the mass of such {\ /\V -
an aggregate diverges, so we refer to it as an infinite aggre-
gate. The three phases are described below.
Pinned aggregate phase (PA phask).this phase, with |

probability one, an infinite aggregate occurs at the chipper
site but not in the bulk. This infinite aggregate acts as a
spatially localized particle bath for rest of the system. FIG. 1. lllustration of the aggregation and chipping moves in
Unpinned aggregate phase (UA phade)this phase, an one dimension. In an elementary move, only a monotakadedl
infinite aggregate can appear at the chipper site, but it cagan leave the chipper sitecated at the originat a ratew. At sites
break and re-form; thus the chipper is occupied only for gother than the origin, the mass leaves as a wksfeded at a rate
finite fraction of time. Besides this localized infinite aggre- 1. Once the mass moves from any site to its neighboring site, it
gate, mobile infinite aggregates can also appear simultgzoalesces with the mass already present on that site.
neously in the bulk. In this sense, this state is different from . ) )
the aggregate phases in translationally invariant systems sugQIved in the presence of extensive disorder and shows a
as the no-chipper limit of this model or the uniform chipping phase transition in all dimensions for all bias from the PA
model[7], in which there is only one mobile infinite aggre- Phase to the NA phase as the density is decreased.
gate whose survival time grows exponentially with system The remainder of the paper is organized as follows. We
size. define the single-chipper aggregation model in Sec. Il and
Nonaggregate phase (NA phas&his phase is character- discuss the possible phases on the basis of' the conservation
ized by the absence of an infinite aggregate anywhere in th@w. We analyze the system within a MFT in Sec. Ill and
system. The mass is spread out all over the system in clu§how that it predicts the occurrence of the UA phase. We
ters, each of which has a vanishing fraction of the total mas&!So discuss the numerical results that support this broad con-
in the thermodynamic limit. clusion in several cases. In Sec. IV we turn to the exceptional
We analyzed the system within a mean field theoryca@se, namely, the one-dimensional, biased case. We present
(MFT) allowing for the spatial dependence in the mass dis@nalytical results in the PA phase and numerical results in
tributions. We find that the MFT predicts the existence ofth® NA phase and at the critical point. In Sec. V, we present
only the UA phase. On comparing this result with Monte the so_lutlon of the_ smgle-chlpper free particle mpdel. We
Carlo simulations in one and two dimensions, we find quali-2lS0 discuss the likely behavior of the aggregation model
tative agreement except in the 1D, biased case. In this exceiﬁmh extensive disorder in Sec. VI. Finally we summarize our
tional case, there is a phase transition from the NA phase tfgsults in Sec. VII.
the PA phase as the density is increased. This case is differ-
ent from the rest due to an interesting interplay of the ballis- Il. SINGLE-CHIPPER AGGREGATION MODEL
tic scale of motion and the diffusive scale of coalescence in AND ITS PHASES
one dimension. A The model
In the model described above, an infinite aggregate is ’
formed due to both interactiongoalescence of diffusing Our model is defined on é-dimensional hypercubic lat-
particles and the presence of an inhomogeneity in the formtice of lengthL with periodic boundary conditions, and is
of the chipper. It is useful to contrast the behavior of thisstudied both in the presence and absence of bias. The system
model with that of a model ohoninteractingparticles in  evolves via following rules: at any site except the origin, all
which the aggregate is formed solely due to the presence ¢he mass at that site moves as a whole to a nearest neighbor
disorder. We solve this model in the presence of a singl@t a rate 1, while at the origin only a single monomer chips
defect by mapping it to a zero range proc¢sd, 18 and  off at a ratew leaving rest of the mass behind. Once the mass
show that it exhibits a phase transition from the NA phase tanoves from any site to its neighboring site, it simply coa-
the PA phase in all dimensions, irrespective of bias. This idesces with the mass present on that site instantaneaesty
in contrast to the aggregation model described earlier thafig. 1). Evidently, the total masil =pL? of the system is
does not show a phase transition in higher dimensions in theonserved, wherg is the mass density.
presence of single chipper. The evolution of the system can be described by the time
Although we mainly discuss the case of a single chippegvolution equation for the probabilit,(m,t) that there is
in this paper, we also discuss what happens in the presenggassm at sitek at timet. As the moves at the origin are
of extensive disorder in both the models. We argue that irdlifferent from that at the rest of the system, the mass distri-
the presence of an extensive number of chippers, the intebution at the origindenoted by 0) and its nearest neighbors
action effectdi.e., coalescengesan be ignored in the aggre- that receive mass from the origidenoted by sef) obey
gation model on large enough length and time scales and #&quations different from those obeyed by rest of the system
behaves like the free-particle model. The latter model can bésetB).
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The set of time evolution equations obeyed by the sites in At the origin itself, the set of evolution equations obeyed
the bulk(setB) are given by are given hy

JP (mt
2 '21 Pik+s(m—m’,m’,t) &PO(mt => { > Poors(m—m’,m’,t) +wPo(m+1t)
m= d |m'=1
= 2 P (mm D —P(mp) |, keB = 3 Pogesmm -wPy(mt)|, (32
m’#0 m %0 '
(1a)
dPo(01)
IP(Ot —— =D [WPy(11)— > Pooss(Om’ t)].
( ):2 > Pdmit)— X Py s(Om 1], at B ° i 0070
o m#0 m’¢0 (3b)
ke B, (1b)

In the gain term for nonzero mass, besides the convolution

wherePy . 5(m,m’,t) is the joint probability that sité& and term, there is an extra tern"_n due to the possibility of chipping
its nearest neighbde+ 8 have massn andm’, respectively.  Off one extra monomer with a rate. The loss terms are
The indexé runs over the @ nearest neighbors in the unbi- Similar to those discussed for the sites in Bet
ased case amdiforward neighbors for the totally biased case.
The convolution term in Eq(la) is the gain term through B. The phases
which the deficit mass is supplied to sikevia diffusion-
aggregation moves from its nearest neighbors. The gain ter
for zero mass in Eq.1b) results from hopping the mass from
site k to one of its nearest neighbors. The system can get o
of the configuration in which the sitehas massn (including
zerg when (a) the mass hops into sitk from its nearest
neighbors andb) the nonzero mass at site hops to its > (mY=2 (M), keB (4a)
nearest neighbors. ° 0

For the sites in the immediate neighborhood of the origin

One can obtain useful information about the nature of the
'gleady state from the following simple analysis. In the steady
l1‘state the mass current into and out of any site must be equal,

.e.,

(setA), the time evolution equation fd?,(m,t) is similar to _ RN
that for setB except that the contribution of the origin needs E (Mg =wsp E (M), keA (4b)
to be taken into account separately. We have
AP (m,t WSy= m , 4¢
+)_2 2 Piis s(m— m’,m’,t) 25 So 25< 0+ (40
m'=1
where (m,) is the average mass at sike#0 and sy=1
+w D, Pyo(m—1m’,t) —P,(0) is the probability that the origin is occupied. The
m’#0 solution of the above equations givés,)=ws, for all k
#0. Thus the average mass on a site in the bulk is uniform in
—2 2 Pik+s(m,m’,t) spite of broken translational invariance. Since the total mass
m’ #0 of the system is conserved, the average mass at the origin
(M) must satisfy
—WE Py o(m,m’,t)— 2 Pr(m,t),
e (Mg)=pLO—wsy(LO~1). 5)
ke A (29
Using this constraint equation, one can deduce some charac-
Py Ot) teristics of the possible phases in the system as follows.
o2 2 PUmU-2" X Py (0m' )

Since the left-hand sidg.-HS) in Eq. (5) is non-negative and
Sp is bounded above by one, the allowed domain dgiis
constrained as shown in Fig. 2. Depending on the valiusg of
(and hencgMg)), the system can exist in one of the three
distinct phases described below.

where the primed sum denotes the sum over the nearest PA phase.The system exists in this phase whefis
neighbors, excluding the origin. The contribution of the ori- pinned to its maximum value 1 for ali>w (shown by the
gin is taken care of by the terms with a coefficiemtthat  bold line in Fig. 2. From the constraint equatioid), one
accounts for the gain or loss in mass via chipping from thededuces that the average mass at the origin growk%s
origin. giving rise to an infinite aggregate in the thermodynamic

m’ #0

—w Y, P o(0m,t), keA, (2b)

m’#0
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single site probability distributions. We begin with the MFT
analysis in arbitrary dimensions in Sec. Il A. We will see
that MFT predicts only the existence of the UA phase in all
dimensions, irrespective of bias. In Sec. Ill B, we study the
UA phase in one dimension in more detail. We discuss some
limitations of this MFT and also present some numerical
results. We close this section with a qualitative discussion of
the UA phase.

PA Phaseﬂ‘

S0

A. MFT in arbitrary dimensions

In this section, we solve fofMy) and sy in arbitrary
dimensions and for all bias within MFT and show that it

FIG. 2. Plot ofsy vs p to show the three possible phases in the predicts the occurrence of only the. UA phase in all cases.
steady state of the aggregation model in the thermodynamic limit, N the steady state, the mass distribution at any Isie
The system exists ite) the pinned aggregate phase wisgris one  iIndependent of time and is determined by setting the LHS of
(bold horizontal ling, (b) the unpinned aggregate phase wiegn Eds. (1a—(3b) equal to zero. Further we replace
<1 and not equal tp/w (gray shaded regionand(c) the nonag- Pk k+s(M.m’) by P (m)Py, s(m’) in Egs.(1a—(3b) to ob-
gregate phase whesy is equal top/w (dashed ling The smooth  tain the mean field equations fd?,(m). To study these
curve shows the MFT solution fag= p/(p-+w) in the aggregation equations, we defin®,(z)==,,-qP(m)z™, the Laplace
model. transform of P, (m) with respect to mass, and find that it

obeys the following set of equations:
limit. Thus the pinned aggregate phase is defined as that in
which an infinite aggregate is present at the origin with a > Q= [1+Qu(Quis—1)], keB (6a)
probability one. 5 >

UA phaseThe system exists in this phase for all values of
Sp lying in the shaded region in Fig. 2. This phase is charac-
terized bysy strictly less than 1, and not equal gdw. As in Eg 1
the PA phase, the average mass at the origin grovs &sit Q=
Sg is not fixed and varies withp. Sincesy<<1, the infinite Al S _
aggregate is present at the origin only for a finite fraction of Ea 1t ws(1-2) Ea (Queo=1)
the time. For this reason, we refer to this phase as the un- (6b)
pinned aggregate phase.

NA phaseThis phase is characterized By— p/w asL
— o (shown by the dashed line in Fig).2Jsing Eq.(5), one 25 W(1=2)(1-so)
immediately obtains(My)/LY—-0 in the thermodynamic Qo= ) (60)
|Imlta Due to the absence of an aggregate with mass of > [W(1—-2)+2(Qps 5~ 1)]

O(L") at the origin, we call this the nonaggregate phase. 5

A more detailed study of the system shows that depending
on the dimension and drive, the system can either stay in on8inceP,(m) is normalized to oneQ,(1)=1 for all k in the
of the three phases or else make transitions from one phaséove equations. The average mass in the btl)
to another ag is varied, keepingv fixed. We have solved =Q,(2)|,-, still obeys Eqgs.(48—(40) that gives uniform
for (M) ands, in d dimensions within a sitewise inhomo- mass in the bulKm)=ws,, and Eq.(5) still holds.
geneous mean field theol¥Fig. 2) which predicts that the Although we could not solve the above set of nonlinear
system exists only in the UA phase in all dimensions, regardeoupled equations, we were able to compute two quantities
less of the bias. This prediction was tested numerically irof primary interest, namely,M,) ands,. We begin by ob-
several cases and seen to be qualitatively correct except Berving that the average mass at the origin can be written in
the 1D, biased case. In the latter case, there is a phase tra@rms of the mean-squared mass at its nearest neighbors,
sition from the NA phase to the PA phase as one crosses the
critical line p=w either by increasing with w held fixed or 5
by decreasingv for fixed p. 25 (2wsp+(mMg, 5) —(m))

<M0>: ' (7)

IIl. THE UNPINNED AGGREGATE PHASE: MEAN FIELD 2(; 2wW(1-sp)
THEORY AND MONTE CARLO SIMULATIONS

, keA

In this section, we analyze the aggregation model withinvhere we have used thatMo)=Q(z)|,—1 and (mg)
the mean field approximation. We implement this approxi-= Qy(2)|,-1+(m), k#0.
mation by replacing the joint probability distribution The mean-squared mass at sites other than the origin
Py k+s(m,m’,t) by the productP, (m,t)P,. s(m’,t) of the obeys the following set dinear equations:
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FIG. 3. Plot of(M,) vs L® for the symmetric, aggregation model f@ d=1 and(b) d=2. In each case, the numerical result is plotted
for two densitiesp=1.5 (squares and p=0.5 (triangles along with the MFT predictior(solid line for p=1.5 and broken line fop
=0.5). Set of parameters usesl=1.

5 5 ) results fpr(M0> in the absence of bias in 1D and 2D plotted
2;4 <mk>:§§: (M +2(m)9), keB (83  along with the MFT results, and find qualitative agreement.
We also measures}, for various system sizes and densities,
fixing w=1 and find that it is independent bfin accordance
>(mA=>" (M2, p+2(m?)+2(m?+(m), keA.  with Eq.(11b. For p=0.5, we found thas}"™=0.42 to be
0 0 gy  Ccompared withsF'=0.33; for p=1.5, numericallysj""
@) o84 whereasy" ' =0.6.

It suffices to calculateZ mZ. ) in order to obtain(Mg).
Adding the above.Y— 1 equations, one obtains B. The UA phase in one dimension

In this section, we analyze the UA phase in more detail in
> (m2, =2 (2(mY3(LY=1)+(m)), (99 the 1D, unbiased case. We solve E(ga) and (8b) for the
° ° mean-squared mass in the bulk in this case and find that the
MFT seems to violate the conservation law. We comment on
this limitation of MFT. We also present numerical evidence
wsy+ (myZ(L9—1) that shows the simultaneous presence of more than one infi-
=pL9—wso(L9~1), (10)  nite aggregate in the system.
For convenience, we will choodeto be odd. The mean-

where the mass conservation equati6nhas been used in Squared mass at sites other than the origin obeys the follow-
the last identity. Solving fos, and(M,) in terms ofp, w, NG equations:

andL, we find
2(mgy=(mi_p)+(mg, ) +4(m)?,  [K=2 (129

which further yields

Mo~ w1

(Mg)= pLALFpLY (11a 2(m?)y=(m3)+(m)+4(m)? (120
O Lowt (pr LS ()= (m8) +(m) +4(m)?,
Ld 2(m? ) =(m?,) +(m)+4(m)2, (129
So= P (11b)
0 (1—W)+(p+W)Ld This set of equations can be solved and one obtains
To leading order irL, the above equations giugMy)~L*® (m3)=2(m)2(L— 1)+ 2(m)3(|k| — 1)(L— k| — 1)
and sp<1 that are the signatures of the UA phase. Thus
MFT predicts that the system exists only in the UA phase for +(m), k#0. (13

all p andw (see Fig. 2. Our numerical simulations show that
this prediction is true at least qualitatively in all cases exceptio leading order irL, the above result can be written in the
in the 1D, biased case. In Fig. 3, we show our simulatiorscaling form(mZ)=L2f(|k|/L) wheref(x)=x(1—x) [19].

016107-5



KAVITA JAIN AND MUSTANSIR BARMA

FIG. 4. Data collapse for the mean squared mass atksite for
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1D, symmetric aggregation model far=32,64,128,256 fofa) p

=1.5 and(b) p=0.5. The numerical fiy=A(p) yx(1—x) wherex=|Kk|/L is shown in broken line witlA(p=1.5)=1.52 andA(p=0.5)

=0.34. Set of parameters used=1.

The mean squared ma&s;) is actually a measure of the the mass-mass correlation function at two different sites

typical mass at sit& To see this, note that we may define

(mim;) is exactly zero in the steady state, in strong contrast

two types of average over mass distributions at $ite to the mean field approximatic(mnimJ-):(m}Z. Thus a more

namely, an averagé - -) over all mass occupations includ-
ing m=0, and an averag§- - -)) over mass occupations
excluding m,=0. It is straightforward to see th&t- - -))
=(---)s, wheres,=1—P,(0) is the probability that sit&

is occupied. For instance, the average masg is same on
all sites while the typical masgm,))={(m)/s, will depend
on k. Similarly, ((mZ)) is the square of the typical mass at
sitek, implying that(mZ) = ((mZ))s, may be interpreted as a
measure of the typical mass at site

We performed numerical simulations to test the mean g

field prediction for the scaling formmZ)=L2f(|k|/L),
wheref(x) =x(1—x). As shown in Fig. 4, we obtain a data
collapse with the scaling formim2)=Lg(|k|/L) with g(x)
~x(1—x) as the numerical fit for the scaling function.
Since g(x)~ X for x close to zero and is constant far
~1/2, the typical mass scales dk for k close to the origin
but asL at sites diametrically opposite to the origin. This

points to the existence of an aggregate in the bulk as well, | !g*gggbg
consistent with the nomenclature unpinned aggregate phase 5 | (M@ /L g |
One notes that the MFT solution seems to violate the

conservation law since it predicts typical masse©0f %) at
sites situatedO(L) away from the chipper. On the other
hand, one can also check that Ef) is true using the MFT
results for(Mgy) and sg. Thus MFT seems to be able to

refined approximation is required in the regions where the
aggregation move dominates.

In Fig. 5, we present the numerical evidence which indi-
cates the simultaneous presence of more than one infinite

T T T T OI_',:32
LL=64
x L=128

o L=256

0.6 |- g _

R, ]
g (M) /L,

max
04 %

0 0.2 0.4 0.6 0.8 1

describe the vicinity of the chipper more correctly than the M, /L

bulk. The reason for this could be that the mass fluctuations 0

about the mean near the chipper are small due to fragmenta- FIG. 5. Data collapse for the conditional average masses
tion unlike those in the bulk where only the aggregation(M{)) and(M{)) of the clusters of largest and second largest

move operates. At a distance OfL) away from the chip-

mass in the bulk when the mass at the chippevljsfor 1D, sym-

per, to a good approximation, one can neglect the presenasetric aggregation model fdr=32,64,128,256. Set of parameters
of the chipper. Then as all the mass resides only on one sitesed:w=1, p=1.
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aggregate in t(rlt)e system. (\é\)/e measured the conditional aver- O(e o), p>w

age masse@M ;2 and(M;7)) of the clusters of the largest _

and second largest mass in the bulk respectively, given there 1=5=Po(0)~ O(L), p=w (14
is a massM,, at the chipper. We find that data collapse is constant, p<<w.

obtained with the scaling formgM () )=Lf;(My/L) and

<M§]12;)>:|_f2(|\/|0/|_), where the scaling functiorfs (x) and Since PO(O_) varies con_tin_ously from the NA phase to PA
f,(x) decay almost linearly. Thus a localized infinite aggre-Phase ag increases, this is a second-order phase transition.
gate at the chipper and one or more mobile infinite aggre- It is useful to introduce two quantitiego) and(t;) that
gates in the bulk can be present at the same time; we woul@spectively denote the average number of consecutive time
expect more than one infinite aggregate to be present itePs during which the chipper is empty and occupied. Then
higher dimensions as well. S is related toto) and(ty) throughs, *—1=(to)/(ty). De-

In any dimensiond, far away from the chipper site, the pending on whether the ratid,)/(t,) is zero or not in the
state resembles that in the absence of the chipper. In tHBermodynamic limits, is either pinned to XPA phasg or
latter case, there is a single mobile infinite aggregate whicistrictly less than 1(NA phase. From Eq.(14), in the PA
is equally likely to be present at any site with a probability phase{to)/(t;)~e "o due to long cascades of successive
1/L9. Although this mobile aggregate with mass of ortldr ~ mass inputs, thus enabling the origin to maintsjrequal to
arrives at the chipper infrequently, the probability of occu-1 and to build an aggregate with mass of order of system
pations, of the chipper is 0fO(1)—this enhancement oc- size. By contrast, in the NA phasé&,)/(t;) approaches a
curs because mass can leave only one unit at a time, so theanstant, independent d&f due to the absence of multiple
it stays for a time of at least ordd®. It is implicit in the  inputs that reduces, from its maximum value 1. We now
above argument that an infinite aggregate can be formed iturn to a systematic discussion of each phase.
the bulk before it hits the chipper. However, this fails to be
true in the 1D, biased case; this explains the absence of the A. The pinned aggregate phase

UA phase in that case. ) , )
Since the total mass in the system is conserved and the

L—1 sites in the bulk have nonzero average mass and
sublinear fluctuations about the mean meédise to absence
of a cluster of mass of orddrin the bulk as argued aboye
the probability Po(m) that the origin has massn is

The mean field prediction that the system exists in the UA~ (1/JL)exd — (m—mg)?/L] where my~M —(mj)L that
phase fails in 1D, biased case. In the presence of a drifgivesPy(0)~exp(—L). Thus in this phase, the chipper site
velocity, the one-dimensional system undergoes a phadge occupied with probability 1 in the thermodynamic limit so
transition from the NA phase to the PA phasegss in-  that it acts as a reservoir of particles for the bulk. One can
creased, keeping fixed. This exceptional case is the subjectthink of the system as a semi-infinite, one-dimensional lattice
of this section. Although the phase transition survives for allwith a perfect, localized source at the origin injecting mono-
nonzero bias, we will only discuss the extreme case when theers into it at the ratev.
mass moves only forwar@.e., infinite bias. The problem of aggregation in the presence of such a

The time required to form an aggregate with mass ofsource has been considered previously as well. Some prop-
O(L) in the bulk isO(L?). But in this case, due to ballistic erties were studied ifi20] using the technique of interpar-
motion, the mass clusters return to the chipper in time oficle distribution function(IPDF) introduced in[22], and in
O(L) ruling out the formation of an infinite aggregate in the [21] by mapping this 1D problem to a bounded random walk
bulk. For smaliw, the sublinear mass arriving at the chipperin 2D. Here we calculate the steady state mass distribution at
cannot leave it easily and is temporarily trapped giving risesite k denoted byP,(m) by the generating function method.
to a localized infinite aggregatéPA phasg As w is in-  We define the-point characteristic function for siteat time
creased, the mass leaves more frequently rendering the trapasZ®(\,t)=(ex — X=X/~ 'm;(t)]). The time evolution
ping less effective; also this chipped off mass cannot returequations obeyed b;zﬁ'd()\,t) with a perfect, localized
before the chipper gets empty so that an infinite aggregateource ak=0 are given by
cannot be sustained at the chipper for lavgéNA phase.

IV. ASYMMETRIC SINGLE-CHIPPER AGGREGATION
MODEL IN ONE DIMENSION

Thus there is a phase transition in the 1D, biased case as 0Z§k) (k=1) , —(K) )

(or alternativelyp) is varied. Jt =Zy 22227, k¥l r#0 (153
The critical point is determined exactly to be@t=w in

the thermodynamic limit by setting the LHS to zero asyd (1)

r

=1 in Eq.(5). Forp<p., the system exists in the NA phase -

that is characterized bgy=p/w and{Mg) growing sublin-
early withL. Forp>p., the system exists in the PA phase in
which s, is pinned to its maximum value 1 al,) grows with the boundary conditioﬁgk)()\,t)z 1 for allk>0. In the
linearly with L (see Fig. 2 The probabilityPo(0)=1-s,  steady stateZ((\,t) is independent of.

that the origin is empty serves as an order parameter. Our We need to solve foz{(\) which is the Laplace trans-
numerical simulations indicate that to leading ordetjn form of P, (m) with respect tom. One can easily solve for

=z +(we r-1-w)z{Y, r#0 (15h
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Z{Y(\) using Eq.(15b and the boundary conditio&{" 1
=1. Its inverse Laplace transform for largegives P;(m)

=e~ ™W/w. Thus the mass distribution at the first site decays
exponentially. Now to find the probability distribution in the L
bulk, we define

)

D‘a)q

Hooy M= 2 2 2900y, (19

i k i
Using equationg15a and(15b), one obtains

m? P, (m)

H(x,y,\) =

1 f2 =,

G(X,\) =Xy m+1—fy , L ) i
C.]

(17) L <, _

where 1f=1+w—we ™ and G(x,\)=Z_, .. ZP(\)xX. L i
Clearly, the inverse Laplace transform Gf(x,\) with re- '

spect ton andx givesP,(m) for k>1. To calculateé5(x,\), 0
we use the same method as[R8]. We first note that the
denominator oH(x,y,\) has roots ay.=1+1—x. The m/(2 w Vk)
root aty=y_ lies inside the unit circle that in the real space
(i.e., r-space gives an exponentially increasing solution.
This is disallowed since the inverse Laplace transform o
H(x,y,\) gives a probability that is always bounded above.
To avoid this pathological solution, we demand thaty _ is

y2—2y+X

FIG. 6. Data collapse for the unnormalized probability distribu-
1tion of mass at sitek=64 (solid squares 128 (crosses 256
(squareyin the PA phase plotted against the analytical result. Inset:
log-log plot of probability distribution for nonzero mass at dite
plotted against the analytical result. Set of parameters used:

a zero of the numerator as well, i.e., =256p=2w=1.
2
G(X,\)=Xy_| ——+ ) (18 write the above equation in terms offF,(zy)
1=x 1=ty =Sop . Zimg EWNZY and R(z.1)

= k = 1
For \—0 andx—1, the inverse Laplace transform can be 2=z E(NZ, r=01,.... Wefind

easily found. We find thatP,(m) has a scaling form

#(u)/m? whereu=m/2w k and the scaling function is Fi(zy)= y zR(z,0) z*
BV oyt Yy (L+w)(ltw-y)
B(U) = e 19 2
= — . Z
Jr -1 (21)

One can also obtain the probability distributi®p(0) of
zero mass at sitk by solving for G(x,\) whenx—« and  With the same reasoning as in the previous calculation, we
x—1. To leading order irk, one obtaind?, (0)=1-s,=1 demand that the numerator 8f(z,y) evaluated ay =1
—1/\/mk. We tested our calculations against the numerical- 1 —z be zero. This condition gives
simulations performed on the single-chipper model and
found reasonably good agreemésee Fig. 8. Thus the typi-
cal mass at sit& grows asyk. R(z,0)=

We now calculate the typical spacing between the masses
using the method of IPDF22]. We defineg,(r,t) as the
probability that the sitek to k+r are empty(includingk and
k+r). ThenE,(r,t) satisfies the following equations,

1 1
l—z+ (1+w)(1+w—y_)

zy_, (22

which on inverting the Laplace transform gives the probabil-
ity Ei(0) that is same a#,(0). One cancheck that the
result forP(0) quoted above is reproduced. Using E2R)

JE(r,t) in Eq. (21), we obtain
ot =Ek(l’—l,t)—2Ek(l’,t)+Ek,1(r+l,t), k:#l
(209 Fa(zy)= | ot : }
Ty yse[l-z (Ttwey)(Itwey o))
ﬂEl(r,t) (23)

m =E{(r—11)—(1+w)E(r,1), (20b)

wherey, =1+ 1+z.
with the boundary conditiofE,(—1,t)=1 for all k>0. In We further defineD(r) as the probability that both sites
the steady statef;,(r,t) is independent ot and one can k andk+r are occupied but no sites in between. Then

016107-8



PHASES OF A CONSERVED MASS MODEL B. .. PHYSICAL REVIEW E 64 016107

Du(r)=Ey1(r=2) =By 1(r=1) —Ex(r— 1)+ Ey(r), 5 T " 1=64
~ L=128 7]
k#1, r#0. (24) :L=256
[ « L=012
Defining the Laplace transform d,(r) with respect tok 3 « L=1024 |
andr ast(z,y):2k=2,_._Er=0,_._Dk(r)zkyr, we obtain :

1 yZ2\ z(1+2)
Fo(z,y)= E( R(z,—2)+ E) TS

2

y 1
+F4(zy) 7+(1—y)(1+ > +z(1-y)

y

x| 2—y{lJr (1+W)(1+W—y)})

1

. (29

whereF(z,y) was calculated above.
Then the typical empty spage,) in front of sitek can be R S M B

obtained by taking the inverse Laplace transform of 0 0.2 0.4 0.6 0.8 1
(dF,13y)|y-1 with respect taz. One finds k/L
2 FIG. 7. Data collapse for the typical mass at &i#€0 in the NA
(ry=1+ —- Wewzk erfqw JE), (26) phase forlL=64,128,256,512,1024. Set of parameters used:
Jwk =1w=2. In this figure, all the sites are labeled by positive integers

in the clockwise direction with the chipper at the origin.

which for large k implies that the typical empty space
{r))={(r/sy in front of occupied sit& varies asyk. Comparison between Eq27) and Eq.(28) yields B+ y=1.

Thus, in the PA phase, the mass in the bulk is distributed Now we consider the typical masgmy)) in the bulk
in VL clusters with typical massk at sitek, and an empty Where the site indek is labeled by positive integers in the
stretch of length/k in front of it. clockwise dir_ection with the chipper at thg origin. Numeri-
cally, ((my)) is observed to obey the scaling forg{m))
= kf(k/L) as shown in the data collapse in Fig. 7. The
) o ) ) scaling function is a slowly varying function, which gives

As discussed earlier, in the NA phasg,is strictly less  sublinear mass everywhere in the bulk. Thus in the NA
than 1 due to substantial time stretches of typical led§h  phase, the mass is distributed in clusters of typical mass
during which the origin is not occupied. Thus the origin does— o(/L) for k~O(L).
not act as a perfect source unlike in the PA phase and we sjnce the mass at the site just behind the chipper is of
could not calculate the mass distribution in this phase. Howo(\/[) and the number of mass inputs to the chipper is typi-
ever, one can obtain useful information about the nature o ; _
this phase by simple scaling arguments. We begin by ar uinéal!y of O(1), it follows that(t,)~O(;L) so that=0.5,

P y Simp garg : gin by arguinginich further givesg=y=»=0.5 due to the two scaling

the|1t<IV!d0) growfs surt:lmegrly with ?nd t.h?n provide numeri- o 1a4i0ns above. These exponent values are checked numeri-
cal evidence for the absence of an infinite aggrega,  cauv as shown in Fig, 8.

mass proportional td.) in the bulk, thus concluding that
there is no infinite aggregate anywhere.

Monte Carlo simulations indicate th&aMg), (tq), and
(t,) vary as a power law il with a constant as a next-order ~ We studied the critical point mainly numerically by study-
correction (see Fig. 8 Therefore, we assumgMy)=al?  ing theL dependence ofMy), (to), and(t;). Assuming a
+b, (to)=coL?+dy, and(t;)=c,L7+d;. Solving fors,  power law dependence faiMo)~L?, (to)~L?, and(t;)

B. The nonaggregate phase

C. The critical point

using Eq.(5), we obtain ~L7, a naive best fit in the range=32 to 2048 givesB
=0.62, y=0.38, andy=0.80. However, the effective expo-
p 1 nent calculated using the successive ratios afsed in the
So=w+o LB (27) simulations shows systematic trengs:decreases ak in-

creases while botly and 7 increase withL. A better fit is
obtained if one allows for logarithmic corrections in the
power laws for{My) (see Fig. 9 and(ty) with B=y=1/2.
This indicates that bothM ) and(to) may vary as/L with
multiplicative logarithmic corrections.
1 Using Eg.(5) and the condition of criticality, one can

So= ! +O<—>. (29) easily show thatp+B8—y=1. Using B=y=1/2 as sug-

CotCy LY gested by the discussion above, we obtainl. The above-

Then since the lowest-order term feg is a constant and
So 1— 1=(to)/(t;), one obtainsy=7. Using this identity
and retaining terms to lowest order linwe further obtain
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30 I T T T T T T T T T I T T T
056 — = . _
25 <t0> | .
. M. /062
I t,) I (Mo)/ |
»
20 |- - .
" - 0.54 |5 |
15 |- M) _ _
B | .
° 0.52 : <Mo>/\/L (ln L) |
I ) A a A A A
5 | |aa |
L 1 I | 0.5 PR T N AT
0 1 L ( | .
4 8 12 16 20 0 500 1000 1500 2000 2500
L
VL |
. . FIG. 9. Plot of(Mg)/L%%2 (squares and (to)/VL(InL)?, B’
FIG. 8. Plot of(Mo), (to), and(t;) as a function of/L in the  —0.7 (triangles as a function ofL at the critical point in the 1D,

NA phase. Since all the three curves are linear, it follows thatyiased case. The variation ¢1,) as /L with multiplicative loga-

(Mg)=aL?+b, (to)=coL”+dp, and(t;)=c,L7+d; with B=y  rithmic correction seems to be a better fit than the fit to a pure

=7=0.5. Set of parameters usqsk=1w=2. power law. The plot of M,)/L%®?vs L has been scaled by a con-
stant factor. Set of parameters uspe: 1, w=pL/(L—1).

?huoted I\(aluesl fgr thieﬁ)gne?sand y aré tcoESftent.wTE aggregation model. We will discuss the solution with an ex-
e scaling relatiors+y=1 which seems to be true in the o6 number of chipper sites in Sec. VI.

NA and the PA phase as well. In the NA phase, we have seen’ o,y ge| is defined on e-dimensional hypercubic lat-

in Sec. IVB that this scaling relation holds. In the PA phaseyjqe it periodic boundary conditions on which we consider
we found ”“me”.ca_”y. tha(g)) is independent ot n the the biased and unbiased diffusion of a conserved number of
thern_wodynamm limit |mply|ng tha_ty=0; further S'F“’ef‘? particles. At any site except the chipper, each particle at-
=1, itfollows that the scaling relatio+ y=1 holdsinthis 405 1o hop out at rate 1. Since the particles do not inter-
phase also. . . . act, the hopping rate out of siteoccupied bym particles is

We have also numerically studié?(t,) that is the prob- o, ‘At the chipper site, assumed to be at the origin, the hop-
ability that the origin is occupied fot; consecutive time ping rate is a constant, independent of the number of par-

steps. At the critical point, this distribu-tion ;hows tWO ticjes. Thus, the rate,(m) at which a particle leaves site
peaks—a broad peak occurs at the typical time stale hot hasm particles is given by

~LP# while there is a narrow peak = Np/w. We have not
been able to reliably separate out these two contributions to u(M)=wéoy ot m(1—6yo), m#*0. (29
P(t,) but since the scaling relation yields=1, one may n ' _

expect that the second peak dominates the asymptotic vald@ the fully asymmetric, 1D case, the model described above

of 7. can be mapped onto a single lane traffic model with sequen-
tial updating and no overtaking. We represent each site in
V. SINGLE-CHIPPER EREE PARTICLE MODEL this model as a car qnd each partlple as a vacant site. Then a
system ofM free particles on a lattice of sizemaps onto a
A. The model system ofL particles with hard core interactions on a lattice

In this section, we study the steady state of a model oPf Sizé L+M. In this new representation, the special car
noninteracting particles in which a localized infinite aggre-(corresponding to the chipper sitenoves with a constant

gate is formed solely due to disorder. In this model the parfate; irrespective of the headway in front of it and rest of the
ticles diffuse freely in the bulk except at certain, quenchedt@rs(sites other than the chippemove with a rate propor-
sites referred to as the chipper sites. It can be shown that thiiona! to the headway in front of it. Note that tisstewise
system exhibits a phase transition from the NA phase to thdisorder in the free particle model correspondspésticle-

PA phase(as defined in Sec. Il Bas the particle density is Wisedisorder in the traffic model.

increased in all dimensions for all bias. In this section, we
will demonstrate this result in the presence of a single chip-
per. We will see that even a single defect is capable of in- The steady state of this system can be found exactly by
ducing a phase transition in all dimensions, unlike in thenoting that the hopping rates E(9) in this model corre-

B. Phase transition in arbitrary dimensions
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spond to a special choice of rates in the zero range process So
[18,14). In this process, a particle at skeéhops to its nearest
neighbor independent of the state at the target site, so that the

interaction has zero range. The steady state measure of thi§ |eading order inL, one obtains two solutions, namely,
process can be found in any dimension with or without b|a550:p/W and s,=1. Since the above analysis holds only

A convenient way to find it is by using the condition of \ han s s strictly less than 1, the only valid solution sg
pairwise balancg24] W.h'Ch states that. fof any given con- =plw for p<w. For p=w, s; is pinned to its maximum
figuration C, one can :md a configuratioB’ in one-to-one a1, 1. Thus there is a phase transition from the NA phase
correspondence wit” such that to the PA phase ai;=w, asp is increased, keeping fixed.
W(C’—C)P(C')=W(C—C")P(C), (30) ”One can so_lve folPy(m) in the PA phase and at the
critical point using the conservation law E®) and the fact
whereP(C) is the probability of a configuratiof in a sys-  that Eq.(33) is valid for all sy in the rangg0,1]. Since the
tem with N sites andV(C—C') is the transition rate fror®  total number of particles is conserved,Py(m)
to C’. The above condition is satisfied by =2cP(C)8(Zk2omc=M—m). The quantity on the right-
hand side can be calculated straightforwardly. The result is

N
P<C>=3H f(m), (31)
A PHAM) = \/—1
0 m(m?)(L9—1)

=pL9—wsy(L9-1), 0=spy<1. (35)

1-so

where
n [M—m—<m>(Ld—1)]2>
l —
fk(m)zizl_[l m for m>0 ><exp< (L 1)<m2> , (36
=1 for m=0, (32) where(m)=v and(m?)=v(1+v) from Eq.(33). One can

see from the above equation th&My)=M—w(L%—1)
andu,(m) is the rate at which a particle hops out of a éite — | d gnd pgA(o):1_50~e*L“ in the PA phase. Further, at
having m particles and\ is the normalization constant. the critical point, we haveLd=w(L%—1) using which in

f,.(m) is defined upto a multiplicative facte™ wherev can Eq. (36), one obtainP,(m) at the critical point,
be interpreted as the fugacity.

For our model, using the above solution for the particle 4 m2
distributionf,(m) and Eq.(29), we find that the normalized PP(M)=\/———— exp( -
probability distributionP,(m) that the sitek in the bulk has m(m2)(L9-1) (LI=1)(m?)

m particles has the Poisson form, 37
e o™ which gives a power law decay infor Pg*(0).
Pr(m)=P(m)= m’ k#0. (33 The phase transition is brought about in this model in the

following way. In the NA phasdthe a low-density phase
The fugacityv will be determined using the conservation the typical number of particles at all sites including the chip-
law. At the chipper site, one can obtain solution fy(m) per is of O(1). As thedensity is increased, there is a phase
whenov <w, transition to the PA phase ai.=w. In this high-density
phase, each site in the bulk still supports o@lg1) number
PNA(m):(1_2)<Z " 2<1 (34) of particles in accordance with E@33) so that the extra
0 w/ilw/ * w7 particles condense on the chipper giving rise( ko)~ LY.
The mechanism of phase transition in this model is similar to
where NA in the superscript stands for the nonaggregaténhat in Bose-Einstein condensation as was pointed otitGh
phase that we have added in the anticipation of a phase trair a similar 1D model that shows a phase transition with
sition. U(M) =wéy o+ (1— ).

Using equation$33) and(34), one can easily see that the
average particle number at ske#0 is (m,)=v=ws, that
further leads to constraint equati@). Since this constraint
equation is identical to that in the aggregation model, then as In this section, we describe a possible scenario in the
discussed in Sec. |l B, the steady state of this model also hasore interesting and physically relevant situation when there
three possible phasdsee Fig. 2 But, as we will see, this is an extensive number of chipper sites. These are assumed
system never exists in the UA phase and there is a phade be placed randomly, with quenched random chipping rates
transition from the NA phase to the PA phasemss in-  w, at sitek distributed according to a distribution Praf).
creased, keepinw fixed, in all dimensions, irrespective of We are interested primarily in the aggregation model but as
bias. argued below, on large space and time scales the behavior of

Solving for the average number of particles at the originthis model with extensive disorder resembles that of the cor-
(M) using Eq.(34) and substituting in Eq(5), we obtain responding free particle mod@ generalization of the model

VI. EXTENSIVE DISORDER
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in Sec. V with an extensive number of chippefisat is ex- where we have separated out the first term corresponding to
actly solvable. the slowest chipper.
Let us consider the diffusion-aggregation process with no  One can analyze E¢39) for variousx as follows:(a) In
bias and take the initial condition to have a random distributhe limit of a single chippefreached ag approaches 0), we
tion of masses. Then the finite concentratiof chipper  know from Sec. V that as the density is increased, there is a
sites brings in new length and time scales into the problemphase transition from the NA phase to the PA phase with an
namely the mean spacing~c'® between the chippers and infinite aggregate at the chipper sit®) In the limit x—1,
the associated diffusion tinte=12. Evidently,|. andt. de-  the model reduces to that considered[®10], where it is
fine respectively the relevant length and time scales oveshown that for Probf,)~ (w,—wg)” asw,—wj, the sys-
which the diffusing mass clusters sense the presence of dam stays in the NA phase for gl if »<0. On the other
extensive number of defects. hand, ifv>0, then there is a transition to the PA phase with
Let us consider a finite but low concentration of chipperan infinite aggregate at the site with chipping raig when
sites so that ¥l.<L. On time scale$<t., we would ex- the density crosses the critical density given by
pect the full system to behave roughly as composed of inde-
pendent, finite systems of sizewith typically a single chip- po(x=1)= f dw Prol(w) 40
per each. The typical state on these short time scales thus ¢ w/wg—1"
resembles the UA-like steady state discussed in Sec. lll. The ) N
typical mass of clusters, both mobile and localized is limited(c) For 0<x<1, there is a transition from the NA to the PA
by the time and grows proportional t§2 as long ag<t,.  Phase if Probg) is chosen as iib) above. The critical den-
As the time crosses,, the finite spacing between the Sity can be determined by takirg— 1 andL%(1—sg)
chippers becomes relevant. The primary effect is to limit the Ed. (39), with the result
size of the aggregates formed in the nonchipper region by the _ _
diffusion-aggregation process tel?, since on a time scale Pe(X)=Xpe(Xx=1)+(1=X)Wo. (42)
=t. the mass cluster is likely to encounter a chipper and gethys the critical density interpolates linearly between its val-
trapped. Fot>t, the coarse-grained view of the system isyes in the limitsx=0 andx=1.
that of mass exchanged between close-by random rate chip- |n view of the correspondence discussed at the beginning
pers with each exchange taking a time.. To the extent of this section, we would expect the aggregation model with
that only finite aggregatesvith mass~13<L?) are formed  a similar distribution of chipper sites to show a phase tran-
in the transit between chippers, it is plausible that on largesition from the NA to the PA phase. In the former phase,
length and time scales, we may ignore interaction effectshere are both localized and mobile aggregates with typical
(i.e., coalescengeand think of the system as effectively free- mass~|g_ In the PA phase, the distribution of masses is
particle-like in the nonchipper region. similar to that in the NA phase at all sites except the slowest

The free particle m_odel with ex'gensive Qisorder is solv-chipper withw,=wy; at this slowest site, there is an aggre-
able along the same lines as the single-chipper problem depte with mass of order volume.
scribed in Sec. V. It defines a zero range process with the

hopping rates, VIl. SUMMARY

In this paper, we introduced a minimal model to study the
effect of quenched, sitewise disorder in an aggregation-
=m, if k is not a chipper site. (39  fragmentation system. Our model had some simplifications:
the fragmentation was allowed to occur only at the trapping
_ ) ) sites, and mass-independent kernels for aggregation and frag-
Let x denote the fraction of chipper sites. We recover thementation were considered. Despite these simplifications, it
single-chipper model ag—0, while x—1 corresponds to retains the important physical effects of diffusion, aggrega-
every site being a chipper site, and is the model consideregon, fragmentation, and trapping.
in [9,10]. For all x, in the low-density phase, the mass dis- \ve studied the case of a single-chipper aggregation
tribution on the nonchipper sites follows the probability dis-model in detalil. In all cases except the 1D, biased case, the
tribution of Eq.(33), while at chipper sites, E¢34) is valid  system exists in the UA phase in which the localized infinite
with w replaced byw, . Let s, be the occupation probability aggregate at the chipper is present only for a finite fraction of
of sitek, ands, refer to the occupation probability of the site time and can coexist with mobile infinite aggregates in the
with the lowest chipping ratewo=min{w,}. Then in the pulk. The simultaneous existence of more than one infinite
steady state, the spatial uniformity of the current lead8)to aggregate is a new feature absent in previous studies of trans-
Wi S =W,Sg if Kis a chipper site, andi) (m)=wgs, if kis  |ationally invariant aggregation-fragmentation systefii$
not a chipper site. Using these relations, one can write then the 1D, biased case, there is a phase transition from a
mass conservation equation analogous to(Bf). as phase in which a localized aggregate with an exponentially
long life time is formed at the chipper sitPA phasgto the
one in which no aggregate is formed anywhere in the system
1 s +Xf dwmﬂl_x)sowozp, (399  (NA phase as the density is decreased. .
Ld 1-sg w/wo—So We also studied a variant of the above aggregation model

u(m)=wy, if k is a chipper site
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in which particles chip off at a single site but diffuse freely in pected in all cases. It would be interesting to check this ex-
the bulk. This model can be solved exactly and shows #ectation by a more detailed study of the system with exten-
phase transition from the PA phase to the NA phase as derive disorder.
sity is increased in all dimensions for all bias.

Finally we discussed a likely scenario for the aggregation
model in the presence of extensive disorder and argued that ACKNOWLEDGMENTS
interaction effects arising due to coalescence can be ignored
on large enough time scales so that, as discussed above, aWe thank D. Dhar and R. Rajesh for useful discussions
phase transition from the PA phase to the NA phase is exand comments on an earlier version of the manuscript.
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